

(19) 대한민국특허청(KR)

(12) 등록특허공보(B1)

(51) 국제특허분류(Int. Cl.)

C23C 4/12 (2006.01) *C23C* 4/04 (2006.01) *C23C* 4/18 (2006.01) *C23C* 4/02 (2006.01)

(21) 출원번호 10-2012-0055215

(22) 출원일자 **2012년05월24일** 심사청구일자 **2012년05월24일**

(56) 선행기술조사문헌

KR101006957 B1*

KR1020020074256 A*

KR1020100136436 A KR1020100026138 A

*는 심사관에 의하여 인용된 문헌

(45) 공고일자 2013년04월25일

(11) 등록번호 10-1256375

(24) 등록일자 2013년04월15일

(73) 특허권자

한국기계연구원

대전광역시 유성구 가정북로 156 (장동)

(72) 발명자

정국채

경상남도 창원시 진해구 장천동 대동다숲 아파트 115동 702호

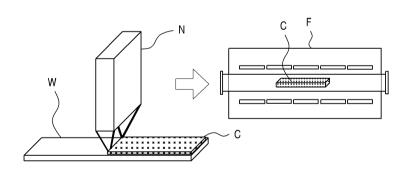
바베쉬 바랫 신하

경남 창원시 성산구 상남동 재료연구소 (뒷면에 계속)

(74) 대리인

이성재

전체 청구항 수 : 총 2 항


심사관 : 배근태

(54) 발명의 명칭 분말분사법에 의한 초전도 코팅막의 제조방법

(57) 요 약

본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조방법은, 이붕화마그네슘(MgB₂)분말을 준비하는 분말준비단계와, 상온에서 코팅대상물인 단결정 Al₂O₃ 기판에 이붕화마그네슘(MgB₂)분말을 200 ~ 300m/s 의 속도로 분사및 코팅하여 초전도 특성을 가지는 코팅막을 형성하는 코팅막형성단계와, 상기 코팅막이 형성된 단결정 Al₂O₃ 기판과 마그네슘을 순철튜브에 장입하고, 상기 순철튜브를 열처리로 내부에 장입한 후 Ar 또는 Ar+45H₂ 가스를 흘려주면서 600 내지 1000℃의 온도 범위로 열처리하여 초전도 특성을 높이는 열처리단계로 이루어진 것을 특징으로 한다.

대 표 도 - 도1

(72) 발명자

김동수

푸르지오APT 804-403

경상남도 김해시 장유면 반룡로 11번지

장세훈

경상남도 창원시 성산구 상남동 재료연구소

경상남도 창원시 성산구 가음동 재료연구소아파트 507호

이 발명을 지원한 국가연구개발사업

과제고유번호 K20903002022-11E0100-03800

부처명 교육과학기술부 연구사업명 과학기술국제화사업

연구과제명 초전도 재료 및 응용을 위한 혁신적 자속고정점의 설계 및 개발

한국기계연구원 부설 재료연구소 주관기관 연구기간 2011.10.01 ~ 2012.07.31

이 발명을 지원한 국가연구개발사업

과제고유번호 PNK2852 지식경제부 부처명

재료연구소 주요사업 연구사업명

연구과제명 신성장동력 기반 분말소재 신기술 개발 및 보급사업

주관기관 한국기계연구원 부설 재료연구소

연구기간 2012.01.01 ~ 2012.12.31

특허청구의 범위

청구항 1

삭제

청구항 2

이붕화마그네슘(MgB₂)분말을 준비하는 분말준비단계와,

상온에서 코팅대상물인 단결정 Al_2O_3 기판에 이붕화마그네슘 (MgB_2) 분말을 $200 \sim 300m/s$ 의 속도로 분사 및 코팅하여 초전도 특성을 가지는 코팅막을 형성하는 코팅막형성단계와,

상기 코팅막이 형성된 단결정 Al₂O₃ 기판과 마그네슘을 순철튜브에 장입하고, 상기 순철튜브를 열처리로 내부에 장입한 후 Ar 또는 Ar+45H₂ 가스를 흘려주면서 600 내지 1000℃의 온도 범위로 열처리하여 초전도 특성을 높이 는 열처리단계로 이루어진 것을 특징으로 하는 분말분사법에 의한 초전도 코팅막의 제조방법.

청구항 3

제 2 항에 있어서, 상기 코팅막형성단계에서,

상기 분말은 아르곤(Ar), 질소(N), 헬륨(He), 수소(H)가스 중 어느 하나 이상에 의해 운반되어 노즐을 통해 분 사됨을 특징으로 하는 분말분사법에 의한 초전도 코팅막의 제조방법.

청구항 4

삭제

청구항 5

삭제

청구항 6

삭제

청구항 7

삭제

명세서

기술분야

[0001] 본 발명은 분말분사법에 의한 초전도 코팅막의 제조방법에 관한 것으로, 보다 상세하게는 분말 상태인 이붕화마 그네슘(MgB₂), 마그네슘(Mg)과 붕소(B)의 혼합물, 특성향상을 위한 추가적인 도핑물질이 혼합된 혼합분말을 분 말 분사법(powder spray)으로 분사 및 부착하여 제조된 분말분사법에 의한 초전도 코팅막의 제조 방법에 관한 것이다.

배경기술

[0002] 이붕화마그네슘(Magnesium diboride, MgB₂)은 미국의 물리학자인 존 바딘, 리언 N. 쿠퍼 및 존 R. 슈리퍼가 주 장하여 1972년 노벨 물리학상을 받은 BCS 이론의 금속성 초전도체의 한계온도인 절대온도 30K를 넘어 39K의 초 전도 임계전이온도를 갖는다는 점에서 전 세계적으로 많은 관심과 연구의 대상이 되고 있다.(J. Nagamatsu, N.

- Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature, 401, pp.63-64 (2001))
- [0003] 또한, 이러한 이붕화마그네슘은 현재 많은 연구가 이루어지고 있는 고온 산화물계 초전도체보다 구조가 매우 간단하고 화학적으로도 안정되어 있으며, 그 원료가 지구상에 풍부하게 존재하고 있어 그 공급이 원활하다는 이점을 갖고 있다.
- [0004] 게다가, 상기 이붕화마그네슘은 초전도 전이온도가 39K라는 점에서 액체헬륨을 사용하지 않고 현존하는 전기 냉동기를 사용하여 충분히 초전도성을 발휘하는 온도까지 낮출 수 있고 초전도 임계 전류밀도 측정값이 높아서 경제적인 이점이 크며 그 응용 범위가 매우 넓다.
- [0005] 따라서, 이러한 이붕화마그네슘에 대한 많은 연구가 이루어지고 있으며, 그 중, 마그네슘(Mg) 분말과 비정질 붕소(B) 분말을 정량비 1:2로 혼합하고, 이를 펠렛 형태로 성형한 후, 열간정수압성형기(HIP)를 이용하여 973K의 온도 및 196MPa의 아르곤 압을 약 10시간 동안 시편에 가함으로써 이붕화마그네슘을 제조하는 방법과(대한민국 등록특허 제0493764호), 정량비 1:2로 혼합된 마그네슘 분말과 비정질 붕소를 금 앰플 캡슐 내에서 2시간동안 900℃로 유지시키면서, 3GPa로 등가압하여 분말을 제조하는 방법이 공지되어 있다.
- [0006] 하지만, 상기와 같은 이붕화마그네슘의 제조방법은 그 제조공정 중 고온 및 고압으로 장시간 유지시켜야 하므로 에너지 소비가 많을 뿐만 아니라, 이를 위한 고가의 설비를 필요로 한다.
- [0007] 따라서, 상술한 이붕화마그네슘 제조방법은 에너지 소모율이 크고 고가의 설비를 필요로 하므로 경제적으로 비효율적인 문제점을 갖는다.
- [0008] 한편, 이붕화마그네슘(MgB₂) 초전도 박막을 제조하기 위한 기술은 크게 두 가지 방식을 취하고 있다.
- [0009] 먼저 붕소(B)를 기판에 증착하고 마그네슘(Mg)을 나중에 기판 외부에 증발시켜 붕소(B) 코팅막에 확산하여 들어 가 이붕화마그네슘(MgB2)으로 합성하는 것이다. two-step 공정 또는 ex-situ 방법으로 명명된다.(대한민국 등록 특허 제0413533호)
- [0010] 또 하나는 마그네슘(Mg)과 붕소(B)를 동시에 증착하여 이붕화마그네슘(MgB₂)으로 합성하는 방법으로서 동시증착 공정 또는 in-situ 방법으로 명명된다.(X. X. Xi et al, Physica C, 456 pp.22-37 (2007))
- [0011] 여기서 주목해야 하는 부분은 마그네슘(Mg)과 붕소(B)의 물리적 성질로서 마그네슘(Mg)의 녹는점은 약 650℃이고 붕소(B)의 녹는점은 2075℃로 매우 큰 차이를 갖고 있다는 것이다.
- [0012] 또한 마그네슘(M)g)은 휘발성이 강하기 때문에 증착하여 박막형태로 제조하기 매우 어려운 물질이다.
- [0013] 특히 증착된 기판의 온도가 높을 경우에는 더욱 심하여 증착 후에 기판 위에 남아 있는 마그네슘(Mg)은 거의 없을 수도 있다.
- [0014] 따라서 ex-situ방법에서는 붕소(B)를 따로 먼저 증착하게 되며, 마그네슘(Mg)는 매우 높은 증기압을 유지하여야 만 붕소(B) 박막 속으로 확산해 들어갈 수 있다.
- [0015] 먼저 증착한 붕소(B)의 경우에도 매우 녹는점이 높은 강한 물질이므로 박막화가 쉬운 물질은 아니며 또한 대기 중 노출시 산화문제 및 crack 문제가 발생할 수 있어 매우 조심스럽게 다루어야 한다.
- [0016] 한편 in-situ방법에서도 마찬가지로 마그네슘(Mg)의 높은 휘발성으로 인해 MgB₂라는 1:2의 조성비를 제대로 맞추기가 매우 어렵기 때문에 공정의 경제성 및 단순성이라는 장점에도 불구하고 좋은 이붕화마그네슘(MgB₂)박막을 제조하기가 힘들었다.
- [0017] 최근 Hybrid Physical and Vapor Deposition방법의 경우 in-situ방법 중 하나로서 B₂H₆ gas와 Mg vapor(기판 주 위에 고체 Mg을 두고 가열하여 높은 증기상태로 유지)를 사용하여 매우 좋은 특성의 MgB₂ 박막을 제조하는 방법으로 알려져 있다.(X. X. Xi et al, Physica C, 456 pp.22-37 (2007))
- [0018] 그러나 이붕화마그네슘(B₂H₆)의 경우 높은 폭발성을 지니고 있어 조심스럽게 다루어야 할 기체이다.
- [0019] 위에서 언급된 두 가지 공정 모두에서 좋은 MgB₂ 박막을 얻기 위해서는 대부분 산화방지 및 증착기술을 사용하기 위해서는 고진공이 필요하고 기판의 온도는 상온 이상에서 수행될 수 밖에 없으며 일반적으로 500℃ 이상을 필요로 한다.

[0020] 한편, 대부분의 전자기용 소자에는 초전도 박막이외에도 다른 박막이 하나이상 존재하고 있으며, 높은 온도에 유지될 경우 서로 다른 박막간의 반응 및 확산 등의 문제가 발생하여 다층박막의 각각 개별 층의 특성은 제대로 된 기능을 잃을 수 있다.

발명의 내용

해결하려는 과제

- [0021] 본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해소하기 위한 것으로, 초기원료인 혼합분말을 노즐을 통해 분사시켜 기판 위에 박막의 형태로 코팅함으로써 초전도 코팅막을 형성할 수 있도록 한 분말분사법에 의한 초전도 코팅막의 제조방법을 제공하는 것에 있다.
- [0022] 본 발명의 다른 목적은, 기판을 높은 온도로 유지하지 않고도 기판에 대하여 높은 접착력을 갖는 초전도 코팅막 제조 방법을 제공하는 것에 있다.
- [0023] 또한, 본 발명의 또 다른 목적은 초전도 코팅막의 공정을 간소화하여 생산 속도를 높일 수 있으며, 두께의 조절이 가능하도록 한 분말분사법에 의한 초전도 코팅막의 제조방법을 제공하는 것에 있다.

과제의 해결 수단

- [0024] 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조방법은, 이붕화마그네슘(MgB₂), 마그네슘(Mg)과 붕소 (B)의 혼합분말, 붕소(B)분말 중 어느 하나 이상의 분말을 준비하는 분말준비단계와, 상기 분말을 코팅대상물에 분사 및 코팅하여 코팅막을 형성하는 코팅막형성단계와, 상기 코팅막을 열처리로 내부에서 열처리하는 열처리단 계로 이루어진 것을 특징으로 한다.
- [0025] 상기 분말준비단계와 코팅막형성단계 사이에는, 상기 분말을 볼밀링하는 볼밀링단계가 실시됨을 특징으로 한다.
- [0026] 상기 코팅막형성단계에서, 상기 분말은 아르곤(Ar), 질소(N), 헬륨(He), 수소(H)가스 중 어느 하나 이상을 통해 운반되어 분사됨을 특징으로 한다.
- [0027] 상기 코팅막형성단계는 상온에서 실시됨을 특징으로 한다.
- [0028] 상기 열처리단계는, 상기 코팅막을 600 내지 1000℃의 온도 범위가 채택됨을 특징으로 한다.
- [0029] 상기 코팅막형성단계에서, 붕소(B) 분말만 분사된 경우에는 열처리단계 실시 중에 열처리로 내부에 마그네슘 (Mg)이 장입됨을 특징으로 한다.
- [0030] 상기 열처리단계에서, 상기 열처리로 내부에는 아르곤(Ar), 질소(N), 헬륨(He), 수소(H)가스 중 하나 이상을 포함하는 가스가 공급됨을 특징으로 한다.

발명의 효과

- [0031] 본 발명에서는 이붕화마그네슘(MgB₂), 마그네슘(Mg)과 붕소(B)의 혼합물, 특성향상을 위한 추가적인 도핑물질이 혼합된 혼합분말을 분말 분사법(powder spray)으로 분사 및 부착하여 이붕화마그네슘으로 이루어진 초전도 코팅 막을 제조할 수 있도록 구성된다.
- [0032] 따라서, 기판의 온도를 높게 유지할 필요가 없고, 기판에 대한 접착력이 높아서 공정이 간소하고 품질이 향상되는 이점이 있다.
- [0033] 또한, 초전도 코팅막의 두께 조절이 가능한 이점이 있다.

도면의 간단한 설명

- [0034] 도 1 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법을 나타낸 개요도.
 - 도 2 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법을 나타낸 공정 순서도.
 - 도 3 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에 따라 제조된 제1실시예의 초전도 코팅막 미세 조직 사진.
 - 도 4 는 본 발명의 바람직한 실시예와 비교예에 대하여 볼밀링단계와 열처리단계 실시 유무를 구분하여 나타낸

₩.

도 5 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계와 열처리단계를 실시하지 않은 비교예 코팅막의 미세 조직 사진.

도 6 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계와 열처리단계를 실시하지 않은 비교예 코팅막의 XRD.

도 7 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계와 열처리단계를 실시하지 않은 비교예 코팅막의 저항-온도 특성 그래프.

도 8 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시예 2의 코팅막 미세 조직 사진.

도 9 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시예 2 코팅막의 XRD.

도 10 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시 예2 코팅막의 저항-온도 특성 그래프.

도 11 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 전 실시예1의 코팅막의 미세 조직 사진.

도 12 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 전 실시예1의 코팅막의 XRD.

도 13 은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 전 실시예1의 코팅막의 저항-온도 특성 그래프.

도 14 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 완료된 실시예1의 코팅막의 XRD.

도 15 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 완료된 실시예1의 코팅막의 저항-온도 특성 그래프.

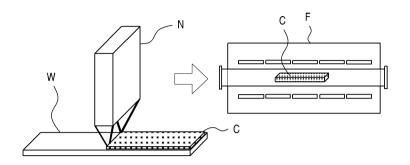
발명을 실시하기 위한 구체적인 내용

- [0035] 이하 첨부된 도 1 및 2를 참조하여 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조방법을 설명한다.
- [0036] 이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원 칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
- [0037] 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
- [0038] 도 1에는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법을 나타낸 개요도가 도시되어 있고, 도 2에는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법을 나타낸 공정 순서도가 도시되어 있다.
- [0039] 첨부된 도면과 같이 본 발명은 아르곤(Ar) 가스를 통해 운반되어진 이붕화마그네슘(MgB₂) 분말을 노즐(N)을 통해 코팅대상물(W) 표면에 분사하여 코팅막(C)을 형성하고, 상기 코팅막(C)은 열처리로(F) 내부에 장입하여 열처리함으로써 초전도성을 가지는 코팅막을 제조할 수 있도록 한 방법에 관한 것이다.
- [0040] 즉, 도 2와 같이 본 발명은, 이붕화마그네슘(MgB₂), 마그네슘(Mg)과 붕소(B)의 혼합분말, 붕소(B)분말 중 어느하나 이상의 분말을 준비하는 분말준비단계(S100)와, 상기 분말을 코팅대상물에 분사 및 코팅하여 코팅막을 형성하는 코팅막형성단계(S300)와, 상기 코팅막을 열처리로 내부에서 열처리하는 열처리단계(S400)가 순차적으로 실시되며, 상기 분말준비단계(S100)와 코팅막형성단계(S300) 사이에는 볼밀링단계(S200)가 선택적으로 실시될수 있다.
- [0041] 상기 분말준비단계(S100)는 이붕화마그네슘(MgB₂), 마그네슘(Mg)과 붕소(B)의 혼합분말 중 어느 하나의 분말을

- 준비될 수도 있고, 붕소(B)분말만 준비할 수도 있다.
- [0042] 다만, 상기 분말준비단계(S100)에서 붕소분말만 준비되는 경우에는 열처리단계(S400)에서 마그네슘 금속이 열처리로 내부에 반드시 장입되어야 함이 바람직하다.
- [0043] 상기 코팅막형성단계(S300)는 200 ~ 300m/s 의 속도로 분말을 분사하여 코팅대상물의 표면에 코팅될 수 있도록 하는 과정으로서, 상온에서 실시되며 상기 분말은 200 ~ 300m/s 의 속도로 분사된다.
- [0044] 상기 볼밀링단계(S200)는 초전도특성을 향상시키기 위해 선택적으로 실시되는 과정으로, 그 효과는 아래의 실시 예를 토대로 자세하게 설명하기로 한다.
- [0045] 상기 열처리단계(S400) 역시 초전도 코팅막의 초전도 특성을 향상시키기 위한 과정으로서 볼밀링단계(S200)처럼 선택적으로 실시되는 것이 아니라 반드시 실시됨이 바람직하다.
- [0046] 본 발명의 실시예에서 상기 열처리단계(S400)의 열처리는 코팅막(C)이 형성된 단결정 Al₂O₃ 기판을 순철튜브의 가운데에 넣고 순철튜브의 끝쪽에는 Mg turning을 두었다.
- [0047] 그리고, 순철튜브는 다시 열처리로 내부에 장입한 후 Ar 또는 Ar+45H₂ 가스를 흘려주면서 약 900℃에서 3시간 정도 열처리하였다.
- [0048] 또한 상기 열처리로(F) 내부에 공급되는 가스는 마그네슘(Mg), 붕소(B), 이붕화마그네슘(MgB₂)과 반응성이 적은 범위 내에서 아르곤(Ar), 질소(N), 헬륨(He), 수소(H)가스 중 하나 이상을 혼합하여 구성될 수 있다.
- [0049] 상기 열처리단계(S400)는 600 내지 1000℃의 온도 범위 내에서 선택될 수 있다.
- [0050] 상기한 과정을 거쳐 제조되는 초전도 코팅막(C)은 도 3과 같이 균일하고 치밀한 박막 형태를 나타낸다.
- [0051] 도 3은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에 따라 제조된 제1실시예의 초전도 코팅막 미세 조직 사진이다.
- [0052] 이하 첨부된 도 4 내지 도 7을 참조하여 볼밀링단계를 실시하지 않은 비교예의 미세 조직, XRD 및 저항-온도 특성을 살펴본다.
- [0053] 도 4는 본 발명의 바람직한 실시예와 비교예에 대하여 볼밀링단계와 열처리단계 실시 유무를 구분하여 나타낸 표로서, 비교예의 경우 볼밀링단계(S200)와 열처리단계(S400) 모두 실시하지 않았고, 실시예1 및 실시예2는 열 처리단계(S400)를 반드시 실시한 반면, 실시예2의 경우 볼밀링단계(S200)는 실시하지 않았다.
- [0054] 도 5는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계와 열처리단계를 실시하지 않은 비교예 코팅막의 XRD이며, 도 6은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계와 열처리단계를 실시하지 않은 비교예 코팅막의 저항-온도 특성 그래프이다.
- [0055] 도면과 같이, 마그네슘(Mg)과 붕소(B)를 1:2의 조성비로 구성된 이붕화마그네슘(MgB₂) 분말에 대하여 볼밀링단 계(S200)와 열처리단계(S400)를 실시하지 않고 위와 같이 살펴본 결과, Al₂O₃ peak가 관찰되었다.
- [0056] Al₂O₃ 는 코팅대상물을 구성하는 성분이며, MgB₂상은 (001) 방향으로 성장한 peak가 관찰되었으나 강도는 크지 않았고, 표면은 균일하여 매끄러웠고 균열은 나타나지 않았다.
- [0057] 그리고, 이붕화마그네슘(MgB₂) 입자는 200nm의 크기를 나타내었다.
- [0058] 그러나, 도 7과 같이 열처리단계(S400)를 실시하지 않은 결과 초전도 전이온도가 시작되는 onset은 약 34.4Kelvin 이고, offset은 18.34Kelvin을 나타내었다.
- [0059] 상기와 같은 비교예의 실험 결과와 대비하여 바람직한 실시예의 실험 결과를 첨부된 도 8 내지 도 10을 참조하여 설명한다.
- [0060] 도 8은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시예2의 코팅막 미세 조직 사진이고, 도 9는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시예2코팅막의 XRD이며, 도 10은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 볼밀링단계를 실시하지 않은 실시예2코팅막의 저항-온도 특성그래프이다.

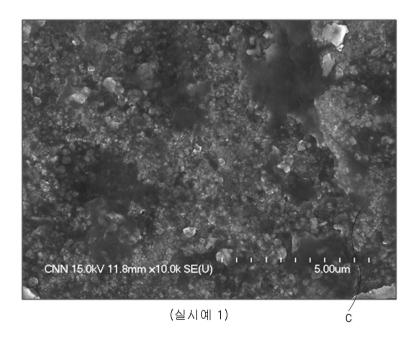
- [0061] 도 8과 같이 본 발명의 실시예2는 비교예보다 균일한 형상을 가지며, 열처리단계(S400) 실시에 따라 표면은 미세한 알갱이들이 증가한 모습을 보여주었다.
- [0062] 이붕화마그네슘(MgB₂) 입자는 100nm의 크기를 나타내어 열처리전(도 5참조)보다 입자크기가 감소한 것을 알 수 있다.
- [0063] 도 9와 같이 열처리단계(S400)를 실시하더라도 이붕화마그네슘(MgB₂) peak의 성장은 보이지 않았으며 열처리로 내부에 같이 장입한 마그네슘(Mg)에 의한 작은 peak가 관찰되었다.
- [0064] 실시예2에 대하여 저항-온도 특성을 도 10을 참조하여 살펴보면, 전이온도가 시작되는 onset은 약 35.6Kelvin이고, offset은 30.6Kelvin을 나타내어 비교예보다 초전도 특성이 향상된 것을 알 수 있다.
- [0065] 따라서, 상기 열처리단계(S400)는 반드시 실시되어야 하는 필수 단계임이 증명된다.
- [0066] 이하 도 11 내지 도 15를 참조하여 본 발명의 바람직한 실시예1의 특성을 살펴본다.
- [0067] 실시예1은 도 4에서 확인할 수 있듯이, 볼밀링단계(S200)와 열처리단계(S400)를 모두 실시하여 제조된 코팅막이다.
- [0068] 도 11은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 전 실시예1의 코팅막의 미세 조직 사진이고, 도 12는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 전 실시예1의 코팅막의 XRD이고, 도 13은 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 연처 리단계 전 실시예1의 코팅막의 저항-온도 특성 그래프이며, 도 14 는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 완료된 실시예1의 코팅막의 XRD이며, 도 15는 본 발명에 의한 분말분사법에 의한 초전도 코팅막의 제조 방법에서 열처리단계 완료된 실시예1의 코팅막의 저항-온도 특성 그래프이다.
- [0069] 도 11(열처리단계 실시 전)과 도 3(열처리단계 실시 후)을 비교해보면 볼밀링단계를 거쳐 미세화된 분말을 사용하여 형성된 코팅막은 매우 균일하고 치밀한 형태를 보여주었다. 그러나 XRD 결과에서는 도 12 및 도 14와 같이 열처리단계(S400)의 실시 여부에 상관없이 Al₂O₃ 외에 이붕화마그네슘(MgB₂)상은 관찰되지 않았다.
- [0070] 도 13(열처리단계 실시전)과 도 15(열처리단계 실시 후)를 참조하여 열처리단계 실시 여부에 따른 저항-온도 특성을 살펴보면, 열처리 전에는 초전도 전이온도가 시작되는 onset은 약 33.8Kelvin으로서 비교예(도 7 참조)보다는 약간 낮은 값을 나타내었으나, 초전도 저항이 zero가 되는 offset은 시료온도를10Kelvin 까지 낮추었으나 zero로 떨어지지 않았다.
- [0071] 전체적으로 초전도 상태의 연결성 및 초전도 특성이 나쁜 것으로 해석된다.
- [0072] 한편, 열처리 후에는 도 15와 같이 onset은 약 37.9Kelvin 이고, offset은 28.9Kelvin을 나타내어 열처리 후에 초전도 특성이 다시 회복된 것으로 판단된다.
- [0073] 이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정하지 않고, 상기와 같은 기술범위 안에서 당업계의 통 상의 기술자에게 있어서는 본 발명을 기초로 하는 많은 변형이 가능할 것이다.

부호의 설명

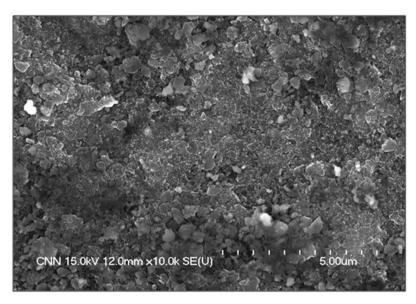

[0074] C . 코팅막 F . 열처리로

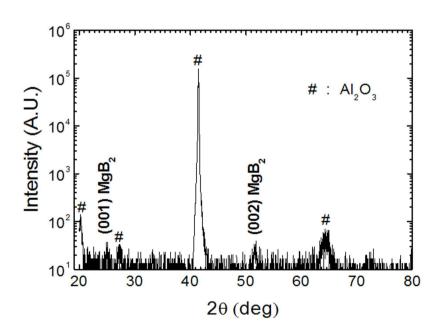
N . 노즐 S100. 분말준비단계

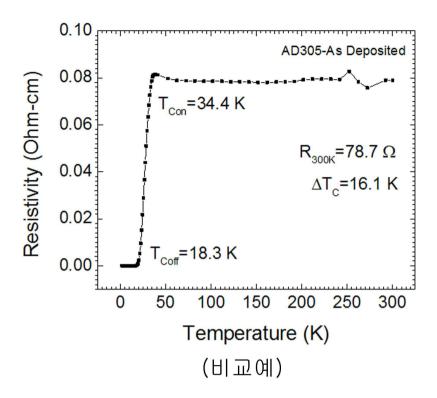
S200. 볼밀링단계 S300. 코팅막형성단계

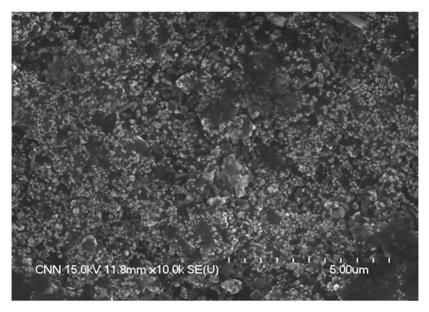

S400. 열처리단계 W . 코팅대상물

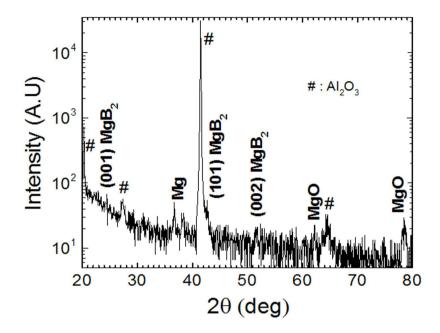
도면1

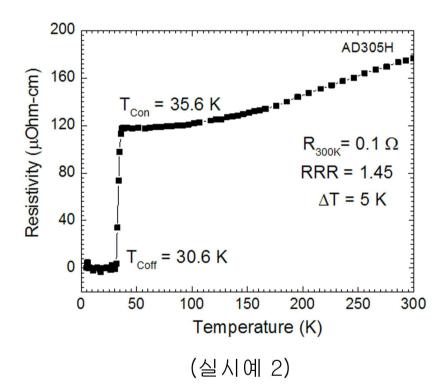

도면2

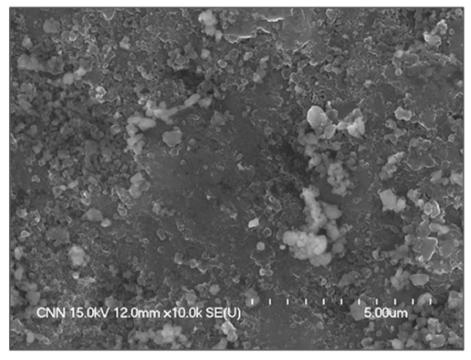


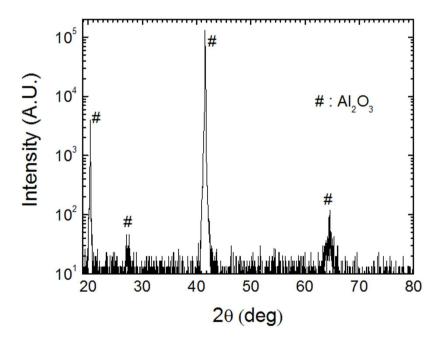

구분	볼밀링단계 실시유뮤	열처리단계 실시유뮤
비교예	Χ	X
실시예1	0	0
실시예2	Х	0

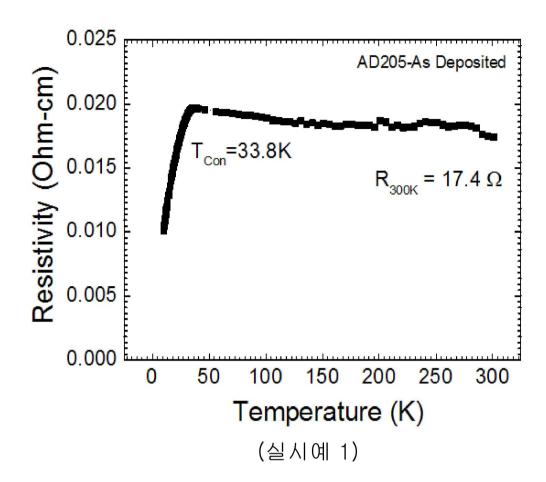

도면5

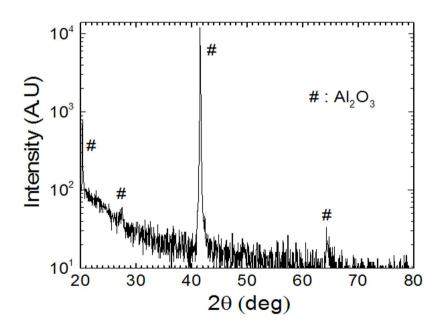

(비교예)

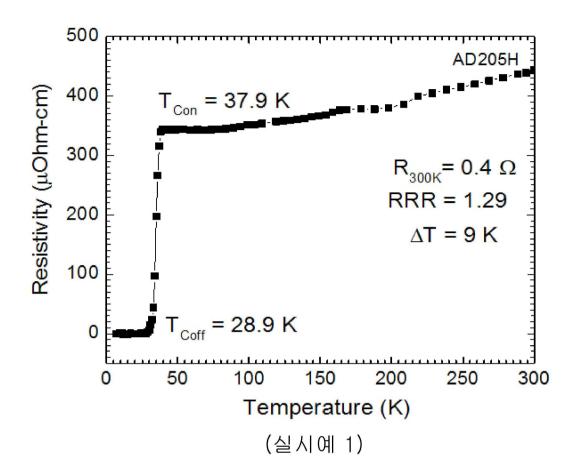





(실시예 2)







(실시예 1)

