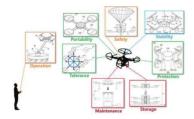
드론(Drone) 성능 개선 기술

K/ RI 기술분류: 항공 기술 분야

거래유형: 추후 협의 기술 가격: 별도 협의

연구자: 이선호 책임

기술이전 상담 및 문의: 특허법인 다나 | 전흥주 팀장 | 02.6957.9917 | hjjeon@fnppartners.com



기술개요

성능이 향상된 드론 기술로 본체, 프로펠러, 지지대, 착륙대 각각의 구조 개선을 통해 기존 드론에 비하여 비행 안정성, 휴대성, 사고 대처능력, 이착륙 능력을 높임

기술개발배경

2015년 국토교통부의 '드론 시범사업 설명회'에서 드론 관련 정책 가이드라인과 시범사업 적용 방안을 제시하였으며, 외국산에 점령당한 국내 시장은 물론 글로벌 시장을 겨냥해 정부는 이미 국산 드론 개발을 중점 국책과제로 선정함

기술완성도

TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TRL8	TRL9
기초이론/ 실험	실용목적 아이디어/ 특허 등 개념 정립	연구실 규모의 성능 검증	연구실 규모의 부품/시스템 성능평가	시제품 제작 /성능평가	Pilot 단계 시작품 성능평가	Pilot 단계 시작품 신뢰성 평가	시작품 인증 /표준화	사업화

※ TRL 5 : 개발한 부품/시스템의 시작품 제작 및 성능평가 경제성(생산성을 고려하지 않고, 우수한 시작품을 1개~수개 미만으로 개발

기술활용분야

군사용 드론, 배달/촬영/통신/농업 등 다양한 분야에 활용 가능

시장동향

- 세계 드론 시장 규모는 연평균 8% 성장해 2022년에는 114억 달러에 이를 것으로 추정되며, 국내 드론 시장은 2022년 5억 2,500만 달러 규모로 추정됨
- 2016년 예산에 '드론 등 무인이동체 미래선도 핵심기술 개발'로 60억 원이 편성됨

개발기술 특성

기존기술 한계

- 병진운동시 원치 않는 회전운동(피칭) 발생
- 외풍 발생시 자세 불안정성으로 인한 위치제어 오차 발생
- 프로펠러 지지대나 구조물로 인한 부피/무게 증가로 보관/휴대 어려움 증대
- 견고한 재질로 인해 충격발생시 파손 가능성 증대
- 비행중 충돌/추돌 또는 이상발생으로 인해 무전력 공급 상태에서 추락 위험
- 다수 드론 운영시 이착륙 운영/충전/보관/운반 어려움 증대

개발기술 특성

- 프로펠러에 틸트로터를 적용하여 무회전 병진운동 구현
- 반작용휠을 적용하여 내풍성 향상
- 탄성변형 가능하고 유연 재질의 테이프 힌지 또는 형상기억합금 힌지를 적용하여 프로펠러 개폐 기능 구현
- 무중력 효과를 이용한 낙하산 자동전개 장치 구현
- 전자석을 적용하여 이착륙 속도 능동제어, 자동충전 기능을 구현

기술구현

무인 비행체	프로펠러부 전개식 무인 비행체	추락사고 방지 드론	드론 착륙 시스템
 틸팅로터 제어를 통해 피칭모션 없는 수평비행 가능 	 힌지를 통해 전개 가능한 프로펠러를 구현하여 드론 휴대성 높임 	추락시 무중력 효과를 이용하여 관통홀을 통해 낙하산 자동 전개됨	드론과 착륙대의 전자석 제어를 통해서 이착륙 속도 제어 가능
 반작용휠 제어를 통해 외력에 의한 자세섭동 보상 	• 충돌시 완충작용으로 프로펠러의 파손을 최소화	낙하산 전개를 위한 전력이 불필요 하여 비상 상황에 효과적임 솔레노이드 밸브 제어를 통해 무중력 효과 조절 가능	 착륙상태에서 비접속식 총전 가능 착륙대를 적층구조로 구현하여 다수
 드론 충돌 안정성 및 협업 정밀도 향상, 획득영상 기하정밀도 향상 	· 디중연결을 통한 광범위 영역 데이터 수집 가능		드론의 보관 및 이동이 용이 • 기존 드론에 탈부착 할 수 있는
			이착륙모듈 구현
1410200 102 103 103 104 105 105 105 105 105 105 105 105 105 105	110	130 130 130 130 130 130 130 130 130 130	330 310

지식재산권 현황

No.	특허명	특허번호
1	무인 비행체	10-1565979
2	프로펠러부 전개식 무인 비행체	10-1589263
3	추락사고 방지 드론	10-1609103
4	드론 착륙 시스템	10-1874204