(19) 대한민국특허청(KR) (12) 공개특허공보(A)

(51) 국제특허분류(Int. Cl.) *B82B 3/00* (2006.01) *C01G 45/02* (2006.01) *C01G 51/04* (2006.01) *C01G 49/08* (2006.01)

- (21) 출원번호10-2013-0031151(22) 출원일자2013년03월22일
- (22) 물변들지 2013년(심사청구일자 없음

- (11) 공개번호 10-2014-0115877
- (43) 공개일자 2014년10월01일

(71) 출원인
 기초과학연구원
 대전광역시 유성구 유성대로1689번길 70 (전민 동,KT대덕2연구센타)
 서울대학교산학협력단

서울특별시 관악구 관악로 1 (신림동)

 (72) 발명자
 현택환
 서울 강남구 남부순환로 2803, 106동 303호 (도 곡동, 삼성래미안아파트)

오명환

서울 관악구 서림11가길 35, 103호 (신림동)

(74) 대리인

서근복, 강태희

전체 청구항 수 : 총 12 항

(54) 발명의 명칭 중공 다금속 산화물 나노입자 제조 방법

(57) 요 약

본 발명은 중공 구조의 다금속 산화물 나노입자 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 제1 전 이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 다금속 산화물 나노입자 제조 방법에 대한 것이다.

대표도 - 도1

특허청구의 범위

청구항 1

제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원 전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법.

청구항 2

제1항에 있어서, 상기 제1 전이금속 산화물이 Mn₃O₄, MnO₂, Co₃O₄, Fe₃O₄, PbO₂ 및 CeO₂로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 3

제1항에 있어서, 상기 제2 전이금속 염이 아이언(II) 퍼클로레이트, 틴(II) 퍼클롤레이트, 바나듐(III) 클로 라이드, 티타늄(III) 클로라이드, 크롬(II) 클로라이드, 아이언(II) 옥살레이트 및 아이언(II) 클로라이드로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 4

제1항에 있어서, 상기 계면활성제가 C₁-C₁₈ 카르복시산, C₃-C₁₈ 알킬아민 및 C₁-C₁₈ 알콜로 이루어진 군으로부터 선택되는 어느 하나 또는 이들의 혼합물인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 5

제4항에 있어서, 상기 C₁-C₁₈ 카르복시산이 올레산(oleic acid), 옥탄산(octanoic acid), 스테아르산(stearic acid) 및 데칸산(decanoic acid)으로 이루어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화 물 나노입자 제조 방법.

청구항 6

제4항에 있어서, 상기 C₁-C₁₈ 알킬아민이 올레일아민(oleylamine), 옥틸아민(octylamine), 헥사데실아민 (hexadecylamine), 옥타데실아민(octadecylamine) 및 트리옥틸아민(tri-n-octylamine)으로 이루어진 군으로부 터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 7

제4항에 있어서, 상기 C₁-C₁₈ 알콜이 올레일알콜(oleyl alcohol), 옥탄올(octanol) 및 부탄올(butanol)로 이루 어진 군으로부터 선택되는 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 8

제1항에 있어서, 상기 혼합물의 pH가 0.0 내지 6.0인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제 조 방법.

청구항 9

제1항에 있어서, 상기 혼합물의 가열 온도는 30℃ 내지 100℃인 것임을 특징으로 하는 중공 다금속 산화물 나 노입자 제조 방법.

청구항 10

제1항에 있어서, 상기 다금속 산화물 나노입자의 형상이 나노박스 또는 나노케이지인 것임을 특징으로 하는 중공 다금속 산화물 나노입자 제조 방법.

청구항 11

제1항에 있어서, 상기 제1 전이금속 산화물 나노입자의 크기는 5 nm 내지 100 nm인 것임을 특징으로 하는 중 공 다금속 산화물 나노입자 제조 방법.

청구항 12

제1항에 있어서, 상기 다금속 산화물 나노입자의 크기는 5 nm 내지 100 nm인 것임을 특징으로 하는 중공 다금 속 산화물 나노입자 제조 방법.

명세서

기 술 분 야

[0001] 본 발명은 중공 구조의 다금속 산화물 나노입자 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계 를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 다금속 산화물 나노입자 제조 방법에 대한 것이다.

배경기술

- [0002] 무기 나노입자의 화학적 변환(chemical transformation)은 고도의 구조적 및 조성적 복잡성을 갖는 나노구조 체를 제조할 수 있는 강력한 도구이고, 따라서 제조가능한 나노구조의 물질의 범위를 확장시킬 수 있다.
- [0003] 다양한 화학적 변환 방법들 중에서, 제어가능한 기공 구조 및 조성을 갖는 중공(hollow) 금속 나노구조체를 제조하기에는 갈바니 치환반응(galvanic replacement reaction)이 가장 다용도로 사용될 수 있다.
- [0004] 갈바니 치환반응은 두 개의 금속 종들의 전기화학적 전위차에 의해 구동되는 부식(corrosion) 과정을 포함한 다. 반응 주형(reactive template)으로서 사용되는 금속 나노입자의 산화적 용해로 인하여 중공 내부(hollow interior)가 생성된다.
- [0005] 최근의 개발에 의해, 고도로 복잡한 중공 금속 및 합금 나노구조체를 생산할 수 있게 되었다. 그러나 갈바니 치환반응을 통한 이온 시스템의 화학적 변환을 달성하기 어렵다.
- [0006] 중공 산화물 나노입자는 에너지, 촉매 및 의학 분야에 대한 응용 가능성으로 인하여 많은 관심을 받고 있다.
 중공 금속산화물 나노입자의 합성에 있어서 상당한 발전이 이루어졌지만(Z. Wang, L. Zhou, X. W. Lou, Adv.
 Mater. 24, 1903 (2012); K. An, T. Hyeon, Nano Today 4, 359 (2009); Y. Piao et al., Nat. Mater. 7, 242 (2008); S. Peng, S. Sun, Angew. Chem. Int. Ed. 46, 4155 (2007)), 중공 다금속산화물(multimetallic oxide) 나노입자의 합성은 여전히 큰 도전이다.
- [0007] 본 발명자들은 전이금속산화물 나노입자에 대해서도 갈바니 치환반응을 통해 중공 다금속 산화물 나노구조체 를 제조할 수 있음을 확인함으로써 본 발명을 완성하였다.

발명의 내용

해결하려는 과제

[0008] 본 발명의 목적은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법을 제공하는 것이다.

과제의 해결 수단

- [0009] 전술한 본 발명의 목적은 제1 전이금속 산화물 나노입자, 제2 전이금속 염, 물 및 계면활성제의 혼합물을 산 성 조건 하에서 가열하는 단계를 포함하고, 상기 제1 전이금속 산화물 나노입자의 표준환원전위가 상기 제2 전이금속 이온의 표준환원전위 보다 더 큰 것인, 중공 다금속 산화물 나노입자 제조 방법을 제공함으로써 달 성될 수 있다.
- [0010] 상기 제1 전이금속 산화물은 Mn₃O₄, MnO₂, Co₃O₄, Fe₃O₄, PbO₂ 또는 CeO₂일 수 있다. 또한, 상기 제2 전이금속
 염은 아이언(II) 퍼클로레이트, 틴(II) 퍼클롤레이트, 바나듐(III) 클로라이드, 티타늄(III) 클로라이드, 크
 롬(II) 클로라이드, 아이언(II) 옥살레이트 또는 아이언(II) 클로라이드일 수 있다.

- [0011] 상기 계면활성제는 올레산(oleic acid), 옥탄산(octanoic acid), 스테아르산(stearic acid) 또는 데칸산 (decanoic acid) 등과 같은 C₁-C₁₈ 카르복시산; 올레일아민(oleylamine), 옥틸아민(octylamine), 헥사데실아민 (hexadecylamine), 옥타데실아민(octadecylamine) 또는 트리옥틸아민(tri-n-octylamine) 등과 같은 C₃-C₁₈ 알 킬아민(alkyl amine(RNH₂); 올레일알콜(oleyl alcohol), 옥탄올(octanol) 또는 부탄올(butanol) 등과 같은 C₁-C₁₈ 알콜; 또는 이들의 혼합물일 수 있다.
- [0012] 상기 혼합물의 pH는 0.0 내지 6.0인 것이 바람직하다. 상기 혼합물의 pH를 조절하기 위하여 염산, 질산, 황산, 아세트산, 옥살산 또는 과염소산과 같은 산을 추가할 수 있다. 또한, 상기 혼합물의 가열 온도는 30℃ 내지 100℃일 수 있다.
- [0013] 상기 다금속 산화물 나노입자의 형상은 나노박스 또는 나노케이지일 수 있다. 본 명세서에서 "나노박스 (nanobox)"란 중공 내부(hollow interior)와 중실 벽들(solid walls)로 이루어진 나노입자를 지칭한다. 또한, 본 명세서에서 "나노케이지(nanocage)"란 중공 내부 및 다공성 벽들로 이루어진 나노입자를 지칭한다.
- [0014] 상기 제1 전이금속 산화물 나노입자의 크기는 5 nm 내지 100 nm일 수 있고, 상기 다금속 산화물 나노입자의 크기는 5 nm 내지 100 nm일 수 있다.
- [0015] 나노스케일의 갈바니 치환반응에서, 다가 금속이온들 간의 산화환원쌍 반응(redox-couple reaction)이 일어난 다. 나노입자 내의 상기 금속 이온들은 용액 내의 또 다른 금속 이온들에 의해 치환된다.
- [0016] 본 발명의 하나의 실시 태양에 있어서, 아이언(II) 퍼클로레이트와 Mn₂O₃ 나노입자를 반응(갈바니 치환반응)시 켜 Mn₃O₄/ɣ-Fe₂O₃ 나노박스 또는 ɣ-Fe₂O₃ 나노케이지를 제조할 수 있다. 상기 갈비니 치환반응은 Fe³⁺/Fe²⁺ 쌍 및 Mn₃O₄/Mn²⁺ 쌍의 표준환원전위 차이를 근거로 설명될 수 있다. 상기 Fe³⁺/Fe²⁺ 쌍의 표준환원전위(0.77 V)가 상기 Mn₃O₄/Mn²⁺ 쌍의 표준환원전위(1.82 V) 보다 더 작기 때문에, Fe²⁺가 Fe³⁺로 산화되고, 동시에 Mn₃O₄는 Mn²⁺ 로 환원된다.
- [0017] 본 발명의 또 다른 실시 태양에 있어서, 아이언(II) 퍼클로레이트 대신에 FeCl₂ 또는 FeCl₃를 반응시키면, FeCl₂의 경우에만 나노입자가 나노케이지로 변환된다. 이러한 사실은 Fe²⁺ 이온이 Mn₃O₄ 나노입자에서 Mn³⁺ 이 온의 선택적 환원제로서 작용한다는 점을 확인시켜 준다.
- [0018] Fe²⁺의 산화로 인해 전자가 방출되고, 이어서 Mn³⁺가 Mn²⁺로 환원됨으로써, 상기 Mn₃O₄ 나노입자의 팔면체 자리 에서 양전하 결함들(positive charge deficiencies)이 생성된다. 상기 결함들은 Mn²⁺ 이온이 Fe³⁺ 이온으로 치 환됨으로써 보충된다.
- [0019] 갈바니 치환반응이 개시되면, 환원된 Mn²⁺ 이온들이 용해되고, 상기 나노입자의 표면 근처에 빈 팔면체 자리를 남긴다. 동시에, 용액 내에 존재하는 산화된 Fe³⁺ 이온들 중 일부가 상기 나노입자의 표면으로 확산하여 즉시 접근가능한 빈자리(vacancy)를 채운다.
- [0020] 환원된 Mn²⁺ 이온들의 방출 흐름과 이에 따라 용액으로부터 산화된 Fe³⁺ 이온들이 상기 Mn₃O₄ 나노입자 표면 상에 위상 침전(topotactic precipitation)하면서, 상기 Mn₃O₄ 나노입자의 최외각 쉘부터 시작하여 Mn₃O₄를 ɣ-Fe₂O₃로 변환시킨다. 이로 인하여 내부의 Mn²⁺ 종들의 외향(outward) 확산이 방해를 받는다. 이러한 변환은 상기 쉘의 모서리 주변에서 주로 발생한다.
- [0021] 상기 환원된 Mn²⁺ 이온들의 현저한 용해로 인한 빈 팔면체 자리들의 수가 증가하면 사면체 Mn²⁺ 이온들과 산소 음이온으로 이루어진 잔여 격자가 완전히 붕괴될 수 있다. 이러한 과정에 의해, ɣ-Fe₂O₃ 층에 의해 덮히지 아 니한 영역, 즉 밑면(basal plane)의 중간에서 반응의 초기 단계 동안에 핀홀들이 생성된다.
- [0022] 상기 갈바니 치환반응이 진행됨에 따라, 상기 Fe²⁺ 이온들이 내부로 이동하여 상기 Mn₃O₄ 나노입자의 내부에서

상기 팔면체 Mn³⁺ 이온들을 환원시킨다. 상기 갈바니 치환반응의 초기 단계 동안에 형성된 핀홀들은, 이렇게 형성된 나노박스로부터 상기 환원된 Mn²⁺ 이온들을 지속적으로 이동시키는 통로로서의 역할을 함으로써, 남은 코어 종들, 즉 사면체 Mn²⁺ 이온들 및 산소 음이온의 용해를 촉진한다.

- [0023] 상기 갈바니 치환반응은 상기 코어가 비고 측벽들이 중공 상태가 될 때까지 진행됨으로써, 불균일구조의 (heterostructured) Mn₃O₄/Fe₂O₃ 나노케이지를 형성한다. 이 단계에서, 초기(nascent) y-Fe₂O₃ 나노케이지의 개방 구조로 인하여 y-Fe₂O₃의 침전이 이의 중공 내부에서 발생함으로써, 상기 y-Fe₂O₃ 나노케이지로 더 변 화되게 한다.
- [0024] Mn₃O₄ 나노입자가 과염소산과 반응했을 때 형태적 변화가 관찰되지 않았기 때문에, 상기 아이언(II) 퍼클로레 이트 수용액의 퍼클로레이트 모이어티(perchlorate moiety)는 상기 중공 구조체의 생성에 영향을 미치지 아니 하는 것으로 보인다. 또한, 출발물질로서 다른 형상의 Mn₃O₄ 나노입자를 사용하여 동일한 반응을 진행하면 다 른 형태를 갖는 케이지와 유사한 구조체를 제조할 수 있다.

발명의 효과

[0025] 본 발명의 방법에 따르면, 제어가능한 기공 구조 및 조성을 갖는 중공 다금속 산화물 나노입자를 갈바니 치환 반응에 의해 간단하게 제조할 수 있다. 또한, 본 발명의 방법은 중공 다금속 산화물 나노입자의 대량 생산에 적합하다.

도면의 간단한 설명

[0026] 도 1A는 본 발명의 실시예 1에서 합성된 Mn₃O4 나노입자에 대한 TEM(투과전자현미경) 사진이고, 도 1A1은 상기 Mn₃O₄ 나노입자에 대한 저배율 사진이며, 도 1A1의 삽입도는 [111]축을 따라 기록한 단결정에 대한 HRTEM(고해 상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn₂O4 단결정 나노입자에 대한 HRTEM(고해상 도 투과전자현미경) 사진이며, 도 1A2의 삽입도는 대응하는 FT(푸리에 변환) 패턴을 보여준다. 도 1B는 본 발 명의 실시예 3에서 합성된 x-Fe₂O₃ 나노케이지에 대한 저배율 TEM 사진(B1) 및 HRTEM 사진(B2)이고, 도 1B2의 삽입도는 상응하는 FT 패턴을 보여 준다. 도 1C는 본 발명의 실시예 2에서 합성된 Co₃O4 나노입자에 대한 TEM 사진(좌측)과 본 발명의 실시예 7에서 합성된 SnO₂ 나노케이지(우측)에 대한 TEM 사진이다. 도 1D는 본 발명 의 실시예 4 및 5에서 각각 합성된 Mn₃O₄/SnO₂ 나노입자(좌측) 및 SnO₂ 나노입자(우측)에 대한 TEM 사진이다. 도 1E는 Mn₃O₄ 나노입자(실원(solid circle)) 및 이의 벌크 상태(bulk counterpart)(중공원(open circle))를 사용하는 합성 과정에서, 반응 생성물 내의 Fe의 몰분율을 아이언(II) 퍼클로레이트 첨가량의 함수로서 나타 낸 유도결합 플라즈마-원자 발광 분광법(ICP-AES) 데이터이다. 도 1E의 점선은 Mn이 Fe로 완전히 치환되었을 경우를 보여 준다. 도 1F는 Mn₃O₄ 나노입자, Mn₃O₄/ɣ-Fe₂O₃ 나노케이지 및 ɣ-Fe₂O₃ 나노케이지에 대한 분말 X-선 회절(XRD) 패턴을 보여 준다. 비교를 위해, Mn₃O4(하단) 및 ɣ-Fe₂O₃(상단)에 대해 알려져 있는 XRD 패턴을 도 1F에 나타내었다. 도 1G는 초전도 양자간섭계(superconducting quantum interference device, SQUID) 측정 으로 얻은 포화자화도 곡선이다.

> 도 2A는 Mn₃O₄ 나노입자의 변환에 대한 개념도이고, Mn₃O₄의 국소적인 용해 및 g-Fe₂O₃의 표면 침전을 통해 상 기 Mn₃O₄ 나노입자의 형태의 변화를 보여 준다. 도 2B 내지 도 2E는 1 mL의 0.4 M(B), 0.6 M(C), 1.0 M(D) 및 1.6 M(E)의 아이언(II) 퍼클로레이트 수용액과 Mn₃O₄ 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 HRTEM 사진이다. 각 삽입도는 대응하는 FT 패턴이다. 도 2F는 도 2B의 나노박스에 대한 고각도 환상 암시야 주사 TEM(high-angle annular dark-field scanning TEM, HAADF-STEM) 사진이다. 도 2B 및 도 2F에 나타나 있 듯이, 나노박스의 표면에서 핀홀들(pinholes)이 생성되었고, 이는 핀홀 부식과 유사한 메카니즘에 의해 상기 나노입자 내부에서 기공이 발달하였음을 의미한다. 상기 핀홀들은 상기 나노입자 코어의 용해 과정에서 전달 경로(transport path)로서 역할을 하였다. 도 2G는 도 2C의 나노박스에 대한 TEM 사진 및 대응하는 EFTEM(energy-filtered TEM) 사진이고, 이 사진들에서 Fe 종들이 모서리에 침전되었다. 도 2H는 도 2D의 나노 케이지에 대한 HAADF-STEM 사진이고, 이 사진에서 개방된 중공 구조가 나타나 있다. 도 2I는 도 2E의 나노케

도 3은 1 mL의 (a) 0.4 M, (b) 0.8 M, (c) 1.6 M 및 (e) 2.0 M의 아이언(II) 퍼클로레이트 수용액과 Mn₃O₄ 나 노입자의 반응에 의해 합성된 중공 나노구조체에 대한 XAS(X-ray absorption spectroscopy) 및 XMCD(X-ray magnetic circular dichroism) 측정 결과이다. 도 3A는 원래의 Mn₃O₄ 나노입자와 중공 나노구조체의 Mn L_{2,3}-모 서리에서의 XAS이고, 도 3B 및 도 3C는 벌크 물질인 g-Fe₂O₃ 및 Fe₃O₄와 비교한, Fe L_{2,3}-모서리에서의 XAS(도 3B)와 중고 나노구조체에 대한 XMCD 스펙트럼(도 3C)이다.

도 4는 본 발명의 실시예 6에서 합성된 Co₃O₄/SnO₂ 나노케이지에 대한 TEM 사진(도 4A, 삽입도(스케일 바 = 10 nm)는 고배율 TEM 사진)과 HRTEM 사진(도4B, 삽입도는 EFTEM 사진)이다.

도 5A는 본 발명의 실시예 8에서 사용된 CeO₂ 나노입자의 TEM 사진이고, 도 5B 및 도 5C는 본 발명의 실시예 8에서 합성된 CeO₂/ɣ-Fe₂O₃ 나노케이지의 TEM 사진이며, 도 5D는 상기 CeO₂/ɣ-Fe₂O₃ 나노케이지의 EFTEM 사진 이다.

발명을 실시하기 위한 구체적인 내용

[0027] 이하, 다음의 실시예 또는 도면을 들어 본 발명을 보다 구체적으로 설명하고자 한다. 그러나 다음의 실시예 또는 도면에 대한 설명은 본 발명의 구체적인 실시 태양을 특정하여 설명하고자 하는 것일 뿐이며, 본 발명의 권리 범위를 이들에 기재된 내용으로 한정하거나 제한해석하고자 의도하는 것은 아니다.

[0028] 실시예 1. Mn₃O₄ 나노입자의 제조

- [0029] 환류응축기(reflux condenser) 및 자석 교반 막대가 설치된 50 mL 3구 플라스크에 담긴 15 mL의 자일렌에 0.17 g의 망간(II) 아세테이트(Adrich), 0.67 g의 올레일아민(Acros) 및 0.14 g의 올레산(Aldrich)을 녹였다. 이후, 상기 플라스크를 교반하면서 공기 중에서 90℃까지 서서히 가열하였다. 1 mL의 탈이온수를 상기 플라스 크 내로 신속히 주입하였다. 상기 반응 혼합물을 공기 중에서 90℃로 1.5 시간 동안 가열하였다.
- [0030] 이렇게 합성된 Mn₃O₄ 나노입자에 대한 TEM 사진(도 1A)을 보면, 상기 Mn₃O₄ 나노입자의 폭과 길이가 약 20 nm 이고 높이가 약 5 nm인 정방정계 형상(tetragonal shape)이다. 도 1A1은 상기 Mn₃O₄ 나노입자에 대한 저배율 사진이며, 도 1A1의 삽입도는 [111]축을 따라 기록한 단결정에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn₃O₄ 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn₃O₄ 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn₃O₄ 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이고, 도 1A2는 [011]축을 따라 기록한 Mn₃O₄ 단결정 나노입자에 대한 HRTEM(고해상도 투과전자현미경) 사진이며, 도 1A2의 삽입도는 대응하는 FT(푸리에 변환) 패턴을 보여준다. 상기 Mn₃O₄ 나노입자에 대한 고해상도 TEM 사진 및 이에 대응하는 푸리에 변환 패턴을 보면, 상기 Mn₃O₄ 나노입자의 윗면 및 옆면이 각각 {001} 면(facet) 및 {100} 면에 의해 둘러쌓여 있고, 이의 꼭지점 및 모서리들이 약간 잘려져 있다(truncated).

[0031] 실시예 2. Co₃O₄ 나노입자의 제조

[0032] 환류응축기가 설치된 100 mL 플라스크에 담긴 15 mL의 옥탄올에 1 mmol의 코발트(II) 퍼클로레이트(Aldrich) 를 녹이고 10분 동안 초음파처리하였다. 이후에 공기 중의 60℃에서 교반하면서, 차례로 상기 플라스크에 10 mmol의 올레일아민과 1 mL의 물을 첨가하였다. 상기 반응 혼합물을 공기 중에서 6시간 동안 160℃로 가열하였 다. 본 실시예에서 합성된 Co₃O₄에 대한 TEM 사진인 도 1C(좌측)에 나타나 있다.

[0033] 실시예 3. 갈바니 치환반응에 의한 Mn₃O₄/y-Fe₂O₃ 및 y-Fe₂O₃의 제조

- [0034] 실시예 1에서 제조된 Mn₃O₄ 현탁액 16 mL에, 다양한 농도(0.1 3.0 M)의 아이언(II) 퍼클로레이트(Aldrich)를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Mn₃O₄/ɣ-Fe₂O₃ 및 ɣ-Fe₂O₃를 제조하였다. 상기 생성 혼 합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다.
- [0035] 도 1B에, 2.0 M의 아이언(II) 퍼클로레이트를 사용하여 합성한 ɣ-Fe₂O₃에 대한 저배율 TEM(도 1B1), HRTEM 사

진(도 1B2) 및 상응하는 FT 패턴(도 1B2의 삽입도)이 나타나 있다. 도 1B를 보면, 원래의 Mn₃O₄ 나노입자가, 내부가 비어 있고 쉘(shell)에 구멍이 있는 나노케이지로 완전히 전환되었다는 점을 알 수 있다. 상기 나노케 이지의 외부 형상은 원래의 Mn₃O₄ 나노입자와 거의 동일하다. 또한, 도 1B2의 HRTEM에서 볼 수 있듯이, 상기 나노케이지의 쉘은 고도로 정렬된 연속적 격자 줄무늬(highly ordered continuous lattice fringe)를 갖는 단 결정상 구조임을 알 수 있다.

- [0036] 도 IE는 Mn₃O₄ 나노입자(실원(solid circle)) 및 이의 벌크 상태(bulk counterpart)(중공원(open circle))를 사용하는 합성 과정에서, 반응 생성물 내의 Fe의 몰분율을 아이언(II) 퍼클로레이트 첨가량의 함수로서 나타 번 유도결합 플라즈마-원자 발광 분광법(ICP-AES) 데이터이다. 도 IE에 나타나 있듯이, 상기 나노케이지 내의 철 대 망간의 몰비율은 91:9이고, 이러한 사실은 원래 나노입자 내의 망간 이온들이 철 이온들에 의해 거의 완전히 치환되었음을 나타낸다. 벌크 Mn₃O₄ 분말을 사용한 경우에는 생성물 내의 Fe의 몰비율이 현저히 낮았다 (25% 미만). 도 IE의 점선은 Mn이 Fe로 완전히 치환되었을 경우를 보여 준다. 도 IF는 Mn₃O₄ 나노입자, Mn₃O₄/ _X-Fe₂O₃ 나노케이지 및 x-Fe₂O₃ 나노케이지에 대한 분말 X-선 회절(XRD) 패턴을 보여 준다. 비교를 위해, Mn₃O₄(하단) 및 x-Fe₂O₃(상단)에 대해 알려져 있는 XRD 패턴을 도 IF에 나타내었다. 도 IF에 따르면, 아이언 (II) 퍼클로레이트의 농도가 증가할수록, 사면체적으로 왜곡된(tetragonally distorted) Mn₃O₄ 스피넬이 정육 면체 x-Fe₂O₃ 스피넬로 변환되었음을 알 수 있다. 이러한 사실은 도 IG에 의해서도 확인된다. 도 IG는 초전도 양자간섭계(superconducting quantum interference device, SQUID) 측정으로 얻은 포화자화도 곡선이다. 도 IG에 나타나 있듯이, Fe 함량이 증가함에 따라 생성된 나노입자의 자화도가 일정하게 증가하였다.
- [0037] 도 2B 내지 도 2E는 1 mL의 0.4 M(B), 0.6 M(C), 1.0 M(D) 및 1.6 M(E)의 아이언(II) 퍼클로레이트 수용액과 Mn₃O₄ 나노입자의 반응에 의해 합성된 중공 나노구조체에 대한 HRTEM 사진이고, 각 삽입도는 대응하는 FT 패턴 이다. 아이언(II) 퍼클로레이트 수용액의 농도가 낮은 경우, 상기 Mn₂O₄ 나노입자의 코어가 부분적으로 용해되 어 비교적 두꺼운 벽을 갖는 나노박스가 생성되었다. 아이언(II) 퍼클로레이트의 농도가 증가할수록 기공의 크기가 커졌고, 상기 나노박스가 나노케이지로 변환되었다(도 2D 및 2H). 치환반응의 중간 단계 진행 중에, 상기 나노박스 및 나노케이지 모두 연속적인 줄무늬 패턴(fringe pattern)을 보였는데, 이는 원래 Mn₃O4 나노 입자의 격자 방향성이 유지된다는 점을 의미한다. 도 2B 내지 도 2E 및 이들의 삽입도는 상기 Mn₃O4 나노입자 의 (100) 평면과 상기 ɣ-Fe₂O₃ 나노입자의 (110) 평면 사이의 평면간 거리가 약간 증가하였음을 보여 준다. 그러나 이러한 변화에도 상기 나노입자의 정사각형 밑면을 따라서 격자의 정렬이 변하지 아니하였다. 이러한 격자 정렬의 보존은 위상 변환(topotactic transformation)을 의미한다. 도 2F는 도 2B의 나노박스에 대한 고 각도 환상 암시야 주사 TEM(high-angle annular dark-field scanning TEM, HAADF-STEM) 사진이고, 이 사진에 서 (011) 평면 상에 핀홀이 형성되었다. 도 2G는 도 2C의 나노박스에 대한 TEM 사진 및 대응하는 EFTEM 사진 이고, 상기 나노케이지의 쉘 영역에서 Fe 종들이 축적되었음을 보여 준다. 도 2H는 도 2D의 나노케이지에 대 한 HAADF-STEM 사진이고, 이 사진에서 개방된 중공 구조가 나타나 있다. 도 2I는 도 2E의 나노케이지에 대한 TEM 사진 및 대응하는 EFTEM 사진이고, 상기 나노케이지의 전체 표면에 걸쳐 상기 Fe 종들이 균일하게 증착되 었음을 보여 준다.
- [0038] 도 3은 1 mL의 (a) 0.4 M, (b) 0.8 M, (c) 1.6 M 및 (e) 2.0 M의 아이언(II) 퍼클로레이트 수용액과 Mn₃O₄ 나 노입자의 반응에 의해 합성된 중공 나노구조체에 대한 XAS(X-ray absorption spectroscopy) 및 XMCD(X-ray magnetic circular dichroism) 측정 결과이다. 도 3A는 철 대 망간의 몰비율의 증가에 따른 Mn L_{2.3}-모서리에 서의 X-선 흡수 스펙트럼이다. 도 3A에 나타난, 상기 나노박스의 Mn L_{2.3}-모서리에서의 XAS는 원래의 Mn₃O₄ 나 노입자의 XAS와 거의 동일하고, Mn³⁺ 및 Mn²⁺ 이온들은 모두 상기 스피넬 구조 내에서 팔면체 자리 및 사면체 자리를 각각 차지하고 있다. 도 3A에서 X-선 흡수 스펙트럼 (b)-(d)에서 볼 수 있듯이, Mn³⁺ 이온에 해당하는 피크는 점차 사라졌고, 치환반응 종료 후에는 Mn²⁺ 이온들의 피크들만 남았다. 그러나 Mn²⁺ 이온의 몰농도가 9% 미만으로 감소한 것은 상기 Mn²⁺ 이온들의 대부분이 상기 사면체 자리로부터 제거되었음을 의미한다. 상기 나노케이지의 Fe L_{2.3}-모서리에서의 XAS 및 XMCD 모두, Fe³⁺ 이온만을 함유하는 ɣ-Fe₂O₃(마그헤마이트)의 XAS 및 XMCD와 유사하였지만, Fe³⁺ 및 Fe²⁺ 이온을 모두 함유한 Fe₃O₄의 XAS 및 XMCD와는 유사하지 아니하였다(도

3B 및 3C). 이러한 결과는 Fe³⁺ 이온들이, 이전에 Mn3+ 이온들이 차지했던 상기 스피넬 구조의 팔면체 자리에 도입되었다는 사실을 의미한다.

[0039] 실시예 4. 갈바니 치환반응에 의한 Mn₃O₄/SnO₂ 나노케이지(nanocage)의 제조

[0040] 실시예 1에서 제조된 Mn₃O₄ 현탁액 16 mL에, 0.34 g의 올레일아민, 2.0 M 틴(II) 클로라이드 수용액 및 0.4 mL 의 HC1 용액(37%)을 포함하는 수용액 0.5 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Mn₃O₄/SnO₂ 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 합성된 Mn₃O₄/SnO₂ 나노케이지에 대한 TEM 사진이 도 1D(좌측)에 나타나 있다.

[0041] 실시예 5. 갈바니 치환반응에 의한 SnO₂ 나노케이지의 제조

[0042] 실시예 1에서 제조된 Mn₃O₄ 현탁액 16 mL에, 0.67 g의 올레일아민, 0.14 g의 올레산, 0.2 mL의 HCl 용액(37%) 및 2.0 M 틴(II) 클로라이드를 포함하는 수용액 0.5 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하 여 SnO₂ 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 합성된 SnO₂ 나노케이지에 대한 TME 사진이 도 1D(우측)에 나타나 있다.

[0043] 실시예 6. 갈바니 치환반응에 의한 Co₃O₄/SnO₂ 나노케이지의 제조

- [0044] 실시예 2에서 제조된 1 mmol의 Co₃O₄ 나노입자, 2 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이 루어진 현탁액에, 2.0 M 틴(II) 클로라이드 및 0.6 mL의 HCl 용액(37%)을 포함한 1 mL의 수용액을 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 Co₃O₄/SnO₂ 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다.
- [0045] 본 실시예에서 합성된 Co₃O₄/SnO₂ 나노케이지에 대한 TEM 사진이 도 4A(삽입도(스케일 바 = 10 nm)는 고배율 TEM 사진)에 나타나 있고, 상기 Co₃O₄/SnO₂ 나노케이지에 대한 HRTEM 사진 도 4B(삽입도는 EFTEM 사진)에 나 타나 있다.

[0046] 실시예 7. 갈바니 치환반응에 의한 SnO₂ 나노케이지의 제조

[0047] 실시예 2에서 제조된 1 mmol의 Co₃O₄ 나노입자, 0.67 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이루어진 현탁액에, 2.0 M 틴(II) 클로라이드 및 0.4 mL의 HCl 용액(37%)을 포함한 수용액 1 mL를 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열하여 SnO₂ 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각 하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예서 합성된 SnO₂ 나노케이지에 대한 TEM 사진이 도 1C(우측)에 나타나 있다.

[0048] 실시예 8. 갈바니 치환반응에 의한 CeO₂/y-Fe₂O₃ 나노케이지의 제조

[0049] 미리 제조된 1 mmol의 CeO₂ 나노입자, 0.67 g의 올레일아민, 0.14 g의 올레산 및 15 mL의 자일렌으로 이루어 진 현탁액에, 1 mL의 1.0 M 아이언(II) 클로레이트 수용액을 첨가한 후, 공기 중에서 2시간 동안 90℃로 가열 하여 CeO₂/ɣ-Fe₂O₃ 나노케이지를 제조하였다. 상기 생성 혼합물을 실온으로 냉각하고 원심분리하여 생성물을 얻은 후, 에탄올로 세척하였다. 본 실시예에서 사용한 CeO₂ 나노입자의 TEM 사진이 도 5A에 나타나 있고, 합 성된 CeO₂/ɣ-Fe₂O₃ 나노케이지의 TEM 사진이 도 5B와 도 5C에 나타나 있으며, 상기 도 5C의 나노케이지의 EFTEM 사진이 도 5D에 나타나 있다.

[0050] 실시예 9. 제조된 나노입자들의 구조 분석

[0051] 200 kV에서 JEOL EM-2010 투과전자현미경(TEM)을 사용하여 TEM 사진을 얻었다. 200 kV에서 JEOL 2200FS 투과 전자현미경을 사용하여 고해상도 TEM(HRTEM)을 수행하였다. 에너지-필터(energy-filtered) TEM 사진들을 Tecnai F20 투과전자현미경으로 기록하였다. 유도결합 플라즈마-원자 발광 분광법(inductively coupled plasma-atomic emission spectroscopy, ICP-AES)(Shimadzu)을 통해 원소 분석을 수행하였다. 회전 산화극 (rotating anode) 및 Cu K a 방사선원(radiation source)(λ=0.15418 nm)을 갖춘 Rigaku D/max 2500 회절계를 사용하여 X-선 회절 패턴을 얻었다. MPMS 5XL Quantum Design SQUID 자력계를 사용하여 자화도 측정을 수행하 였다. Fe 및 Mn L_{2,3}-모서리 XAS 및 XMCD 측정은 포항가속기연구소의 빔라인 2A에서 수행되었다. Micromeritics ASAP 2000 가스흡착분석기를 사용하여 77K에서 질소 흡착 및 탈착 등온선을 측정하였다. BET(Brunauer-Emmett-Teller) 식 및 단일지점법(single-point method)를 사용하여 총표면적 및 기공 부피를 각각 측정하였다.

도면

도면1

도면2

도면3

도면4

